
A Base-catalyzed Elimination from 4-Phenylbenzhydryl Thiocyanate to give 4-Phenylthiobenzophenone

By A. CECCON, U. TONELLATO, and U. MIOTTI (Istituto di Chimica Organica, Università di Padova, Italy)

BASE-PROMOTED elimination of HX (where X is an electronegative atom or group) from two adjacent carbon atoms is well known, and the mechanism of such eliminations has been described.¹ However, so far as we are aware, the base-promoted elimination of HX from sulphenic systems, >CH·SX, to give thioaldehydes or thioketones, has not previously been reported. We report such an elimination, brought about by sodium isopropoxide in isopropyl alcohol, from 4-phenylbenzhydryl thiocyanate, a sulphenic cyanide, to give 4-phenylthiobenzophenone.

To check the stoicheiometry of the reaction the following experiment was performed. Isopropyl alcohol solutions of 4-phenylbenzhydryl thiocyanate and sodium isopropoxide were mixed under a nitrogen atmosphere. A dark blue colour immediately appeared (absorption maxima at 603 m μ and 345 m μ) while cyanide ion was simultaneously

produced. Authentic 4-phenylthiobenzophenone prepared from the oxygen analogue,² and purified by chromatography on silica gel,³ showed the same absorption maxima (in isopropyl alcohol $\epsilon_{603} = 232$; $\epsilon_{345} = 17,000$).⁴ Analysis of solutions after reaction showed a quantitative yield of thioketone (100%, by its absorption spectrum) and cyanide ion (94%, by bromine titration⁶).

The kinetics of elimination' follow a secondorder rate equation as shown by the data in the Table, where the rate constants are reported for a number of concentrations of substrate and base. The data allow two significant observations: (a) the rate of elimination is extremely high; (b) the hydrogen isotope effect, $k_{\rm H}/k_{\rm D} = 3.1$, although a primary one, is considerably lower than that calculated⁸ for an intermediate proton transfer between carbon and oxygen in the transition state, $k_{\rm H}/k_{\rm D} = 7.09$.

Elimination reactions leading to multiple-bond formation between carbon and a hetero-atom normally occur more readily than the corresponding olefin-forming eliminations and the factors responsible for the higher rate have been discussed by Hine.⁹ In our system, high reactivity is particularly favoured by the presence of two α -aryl groups, which stabilize the negative charge on carbon by inductive and resonance effect, as

TABLE

Second-order rate constants for 4-phenylthiobenzophenone formation in isopropyl alcohol at 20°C *

Ar ¹ Ar ² CH·SCN, M \times 10 ³	 2.08	1.78	1.39	0.98	1.38	1.33	1.33	2·58b	2.58b
$Pr^{i}ONa, M \times 10^{3}$	 1.79	3 ·29	4.50	4.65					
$k_2, M^{-1} \text{ sec.}^{-1} \dots$	 13.4	13.5	13.5	13.4	13.5	13.8	13.1	4.23	4.32

^a All runs carried out under a nitrogen atmosphere.

^b 4-Phenyl- $[\alpha^{-2}H]$ benzhydryl thiocyanate.

well as by the α -sulphur atom which does the same mainly through *d*-orbital resonance effects.

The kinetic isotope effect, although indicating carbanion character of the transition state,^{1b} does not provide clear-cut evidence either of the intermediacy of a carbanion or of a concerted

elimination process. Carbanion trapping experiments and stereochemical studies are in progress in order to allow a choice between these two possibilities.

(Received, July 18th, 1966; Com. 516.)

¹ For recent Reviews on this subject, see: (a) D. V. Banthorpe, "Elimination Reactions", Elsevier, London, 1963; (b) J. F. Bunnett, Angew. Chem., 1962, 74, 731.
² H. Standinger and H. Freudenberger, Ber., 1928, 61, 1576.
³ R. H. Abeles, R. F. Hutton, and F. H. Westheimer, J. Amer. Chem. Soc., 1957, 79, 712.
⁴ A slightly lower extinction coefficient at 603 m μ has been previously reported (ref. 5).

⁶ G. Sartori and C. Furlani, Ann. Chim. (Italy), 1954, 44, 95.
⁶ G. Charlot and D. Bezier, "Quantitative Inorganic Analysis", Methuen, London, 1957, p. 380.

⁷ The appearance of a thicketone was followed by recording the increase in optical density at 603 m μ with a DB Beckmann spectrophotometer.

⁸ F. H. Westheimer, Chem. Rev., 1961, 61, 265.

⁹ J. Hine, "Physical Organic Chemistry", 2nd edn., McGraw-Hill, New York, 1962, pp. 206-208.